Author Correspondence author
Molecular Microbiology Research, 2024, Vol. 14, No. 2
Received: 01 Mar., 2024 Accepted: 05 Apr., 2024 Published: 17 Apr., 2024
This study explores the diversity of endophytes in wild wheat and their potential applications in agriculture. The study reveals that wild wheat relatives, such as Triticum dicoccoides and Aegilops sharonensis, harbor significantly higher endophyte diversity compared to domesticated wheat, including many unique taxa absent in modern varieties. These endophytes show tremendous potential in enhancing plant stress tolerance (such as drought, salinity, and heavy metal tolerance), improving disease resistance, and promoting plant growth. Furthermore, modern molecular techniques, such as next-generation sequencing, have identified distinct microbial communities in different plant organs, which play a critical role in influencing plant health and stress responses. Endophytes, as biofertilizers and biocontrol agents, demonstrate significant potential in reducing the use of chemical fertilizers and pesticides. Integrating these beneficial endophytes into breeding programs could enhance the stress tolerance and productivity of domesticated wheat. Future research should focus on tissue-specific interactions between endophytes and host plants, evaluating their efficacy under field conditions, and assessing the long-term sustainability of endophyte application to advance their use in sustainable agriculture.
. FPDF(win)
. FPDF(mac)
. HTML
. Online fPDF
Associated material
. Readers' comments
Other articles by authors
. Xueli Zhang
. Zhonghui He
Related articles
. Wild wheat
. Endophyte diversity
. Stress tolerance
. Sustainable agriculture
. Molecular techniques
Tools
. Post a comment