How Seaweed Became Multicellular
Published:18 Jun.2024 Source:Cell Press
Three lineages of macroalgae developed multicellularity independently and during very different time periods by acquiring genes that enable cell adhesion, extracellular matrix formation, and cell differentiation, researchers report April 12 in the journal Molecular Plant. Surprisingly, many of these multicellular-enabling genes had viral origins. The study, which increased the total number of sequenced macroalgal genomes from 14 to 124, is the first to investigate macroalgal evolution through the lens of genomics.
To investigate the evolution of macroalgal multicellularity, the researchers sequenced 110 new macroalgal genomes from 105 different species originating from fresh and saltwater habitats in diverse geographies and climates. They found that macroalgae acquired many new genes that are not present in microalgae on their road to multicellularity. The team also identified other features that were distinct between the macroalgal lineages. They observed much more diversity between different species of Rhodophyte, which evolved multicellularity first and have thus had longer to diverge. They also found that Chlorophytes share many genomic features with land plants, suggesting that these genes may have already been present in the last common ancestor of Chlorophytes and plants.
The researchers are already digging into the dataset to investigate environmental and habitat adaptations amongst macroalgae. In future, they hope to sequence and analyze even more macroalgal genomes.