Analysis Finds Diversity On The Smallest Scales in Sulfur-Cycling Salt Marsh Microbes
Published:28 Nov.2023 Source:Marine Biological Laboratory
At the surface, salt marshes and their windswept grasses can look deceptively simple. But those marshes are teeming with biodiversity, from the insects and migrating birds in the air all the way down to the microbes that live in the soil. Scientists from the Marine Biological Laboratory (MBL) have discovered that even among the sulfur-cycling microbes that are responsible for the "rotten egg gas" smell in salt marsh air, diversity extends all the way to genomes and even to individual nucleotides.
To study the relationship between saltmarsh cordgrasses and the sulfur-cycling microbes that live in the sediments around their roots, MBL scientists analyzed DNA sequenced datasets of microbes collected from salt marsh sites in Massachusetts and Alabama. This in-depth analysis of sulfur-cycling microbial diversity in salt marshes -- from their entire genomes down to single nucleotides -- was published October 26 in Applied and Environmental Microbiology.
In salt marshes, the sulfur cycle is closely linked with the carbon cycle, and healthy salt marshes store a very large amount of carbon in peat and associated soil minerals.